图片

nba比分直播_虎扑nba-体育|社区|论坛

当前位置:主页 > 考试 > 公务员 > 行测辅导 > 数量关系 > >

公务员考试行测辅导:数学运算中的排列组合问题

来源::未知 | 作者:nba比分直播_虎扑nba-体育|社区|论坛 | 本文已影响
  排列组合问题作为数学运算中相对独立的一块,在公务员考试中的出场率颇高,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。  
  【基本原理】  
  加法原理:完成一件事,有N种不同的途径,而每种途径又有多种可能方法。那么,完成这件事就需要把这些种可能的做法加起来;   乘法原理: 完成一件事需要n个步骤,每一步分别有m1,m2,…,mn种做法。那么完成这件事就需要::m1×m2×…×mn种不同方法。  
  【排列与组合】  
  排列:从n个不同元素中,任取m( )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列  
  组合:从n个不同元素种取出m( )个元素拼成一组,称为从n个不同元素取出m个元素的一个组合  
  【排列和组合的区别】  
  组合是从n个不同的元素种选出m个元素,有多少种不同的选法。只是把m个元素选出来,而不考虑选出来的这些元素的顺序;而排列不光要选出来,还要把选出来的元素按顺序排上,也就是要考虑选出元素的顺序。所以从这个角度上说,组合数一定不大于排列数。  
  【特殊解题方法】  
  解决排列组合问题有几种相对比较特殊的方法:插空法,插板法。以下逐个说明:  
  (一).插空法  
  这类问题一般具有以下特点:题目中有相对位置不变的元素,不妨称之为固定元素,也有相对位置有变化的元素,称之为活动元素,而要求我们做的就是把这些活动元素插到固定元素形成的空中。举例说明:  
  例题1 :一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?                              
  (2008国家行测) A.20    B.12    C.6    D.4     
  解法1:这里的“固定元素”有3个,“活动元素”有两个,但需要注意的是,活动元素本身的顺序问题,在此题中: 1).当两个新节目挨着的时候:把这两个挨着的新节目看成一个(相当于把它们捆在一起,注意:捆在一起的这两个节目本身也有顺序)放到“固定元素”形成的空中,有:C41×2=8 种方法。   2).当两个节目不挨着的时候:此时变成一个排列问题,即从四个空中任意选出两个按顺序放两个不同的节目,有:P42=12种方法。 综上所述,共有12+8=20种。  
  解法2:分部解决。1)可以先插入一个节目,有4种办法;                   2)然后再插入另一个节目,这时第一次插入的节目也变成“固定元素”故共有5个空可供选择;   应用乘法原理:4×5=20种     
  例题2. 小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?  
  A.54          B.64         C.57           D.37  
  解法一:列表解题,第四个数=第一个数+第二个数。
台阶 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
走法 0 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37
  
  解法二:插空法解题:考虑走3级台阶的次数:  
  1)有0次走3级台阶(即全走2级),那么有1种走法;  
  2)有1次走三级台阶。(不可能完成任务);  
  3)有两次走3级台阶,则有5次走2级台阶:  
   (a)两次三级台阶挨着时:相当于把这两个挨着的三级台阶放到5个两级台阶形成的空中,有C61=6种走法;  
   (b)两次三级不挨着时:相当于把这两个不挨着的三级台阶放到5个两级台阶形成的空中,有C62=15种走法。  
  4)有3次(不可能)  
  5)有4次走3级台阶,则有2次走两级台阶,互换角色,想成把两个2级台阶放到3级台阶形成得空中,同(3)考虑挨着和不挨着两种情况有C51+C52=15种走法;  
  6)有5次(不可能) 故总共有:1+6+15+15=37种。  
  (二). 插板法: 一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。  
  举例说明: 例题1.  把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?      解析: 此题的想法即是插板思想:在20电脑内部所形成的19个空中任意插入17个板,这样即把其分成18份,那么共有:  
C1917=C192=171 种。  Eg2。有10片药,每天至少吃1粒,直到吃完,共有多少种不同吃法?   
  解法1:1天吃完:有C90=1种;         2天吃完:有C91=9种;         ……         10天吃完:有C99=1种; 故共有:C90+C91+…+C99=(1+1)9=512种。    
  解法2:10台电脑内部9个空,每个孔都可以选择插板或者不插板,即每个孔有两种选择,共有9个空,共有29=512种。 这里只讨论了排列组合中相对比较特殊的两种方法,至于其它问题可参见中公网的其它书籍,这里不再赘述。                    
  【排列组合在其他题型中的应用】                                                    
  例题.学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?  
  A.52          B.36          C.28           D.12  
  解法一:本题实际上是想把1152分解成两个数的积,则1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。  
  解法二:(用排列组合知识求解)  
  由1152=27×32,那么现在我们要做的就是把这7个2和2个3分成两部分,当分配好时,那么长方形的长和宽也就固定了。  
  具体地: 1)当2个3在一起的时候,有8种分配方法(从后面有0个2一直到7个2); 2)当两个3不在一起时,有4种分配方法,分别是一个3后有0,1,2,3个2。故共有8+4=12种。  
  解法三:若1152=27×32,那么1152的所有乘积为1152因数的个数为(7+1)×(2+1)=24个,每两个一组,故共有24÷2=12组。

nba比分直播_虎扑nba-体育|社区|论坛

热榜阅读TOP

本周TOP10

国考行测数量技巧:星期和日期问题

国考行测数量技巧:星期和日期问题

在国家公务员行测中,星期、日期这类问题难度不大,但得分率较低,考生稍有马虎就可能做错。究其原因,星...